

Exploration of heat management concepts for a hydrogen fuelled midrange commercial aviation engine

Jonsson I.¹, Miltén, P.¹, Xisto, C.¹, Mauro, M.², Alexiou, E.³

Chalmers University, Gothenburg, Sweden
Reaction Engines, Abingdon, United Kingdom
Aristotle U. of Thessaloniki, Greece

Date: 05.09.2023

Thermal Management – Background

Intercooling / Recuperation

- Huge cycle benefits
- Smaller Core
- Large and heavy HX

https://www.enginehistory.org/Piston/Napier/NapierNoma dll/NapierNomadll.shtml

Piston Topping

- Cycle Benefits, OPR
- Complexity
- Large and heavy piston systems

Liquid Hydrogen

- Huge, cold heat sink
- Keeps enthalpy in the system
- ~10% of lower heating value

Thermal Management of Hydrogen

Mature, Down-select & Optimise thermal management solutions

Objectives

- Define thermal management requirements and specifications (T3.1, T3.3).
- Develop conceptual design tools for heat management components (T3.1).
- Mature LH2 enhanced intercooling concept to TRL 3 (T3.2).
- Down-select and optimize compact high performance thermal management solutions tailored for the specifications of the candidate CCE concepts (T3.3).

Intercooling - Form Factor

Using fuel as thermal sink, single loop: Simplicity, low weight, thermal authority (depending on mass flow constraints), **risk**

> By-pass air as thermal sink, single loop Simplicity, low risk, thermal authority, weight

One of many concept of location of HX in the core

Using Both

Safety, thermal authority, comprehensiveness, more flexible, possible redundancy and risk containment, complexity, weight, cost, failure modes

Intercooling - Design tool

- Creating feasible HX configuration maps
- Reaction Engines: ATOM: In-house design tool

Example:

- Low aspect ratio, involute spiral, high DP tubes configuration
- Other types HX Turning HX (CTH)

Maturing Intercooling Concepts

- Intercooling integration
- Detailed CFD studies

Experimental Verification TRL3

- 2.5 Stage Compressor
- Large-scale
- Stable Operation;
- Aerothermal Investigation;
- Designed for heatmanagement integration studies;

CCE components - Thermal Management

Novel piston configuration duct diverting bypass air for intercooler Cooling requirements Similar approach as for intercooling • [COCO 0D-1D model] \rightarrow Surrogate Models \rightarrow CFD → turbo compressor Experiments - TRL3.

> Kaiser, S., Schmitz, O., and Klingels, H. (January 13, 2021). "Aero Engine Concepts Beyond 2030: Part 2—The Free-Piston Composite Cycle Engine." ASME. *J. Eng. Gas Turbines Power*. February 2021; 143(2): 021002. https://doi.org/10.1115/1.4048993

optional

intercooler

free piston units

Additional Thermal Management

Additionally, heat management concepts having a direct impact on non-CO2 emissions such as intercooling with LH2 will be matured to TRL 3. The selection of technologies includes:

- The direct use of core air for cooling and lubrication.
- The use of cryo-cooling concepts for LH2 heat-management
- Phase-change cooling concepts, such as hybrid nucleate boiling

Final Remarks

WP in conceptual stage:

- Various intercooling strategies have been identified and a modelling tool capable of performing optimisations has been developed.
- Air-to-Air HX potentially capable of delivering the desired cooling at the cost of mass and volume; an Air-to-H2 HX offers mass and volume saving opportunities but with potential thermal authority limitations depending on the cycle characteristics, eg: H2 mass flow.
- An additional fluid might be required to mitigate the H2 related risks.
- Mixed solution might provide a suitable solution but a more complex system

Thank you !

Presenter: Isak Jonsson Organisation : Chalmers

The MINIMAL project is receiving funding from the European Union's Horizon Europe research and innovation programme under grant agreement No: 101056863

Cranfield University is being funded by UKRI (IUK), Project No: 10040930 under the Horizon EuropeGuarantee

